Tuesday, December 1, 2015

fractals and self-similarity



Characteristics of a fractal object
1.    Infinite detail at every point
2.    Self similarity between object parts
Types of self similarity
ü Exact self similarity
ü Statistical self similarity
Exact self similarity
     if a region of a curve is enlarged the enlargement looks exactly like the original
Statistical self similarity
     if a region is enlarged the enlargement on an average looks like the original
Successive refinement of curves
     by repeatedly refining a simple curve very complex curves can be fashioned
Ex. Koch curve
Koch curve produces an infinitely long line within a region of finite area
Generations
Successive generations are denoted by K0 , K1, K2 , …
The zeroth generation shape  K0  is a horizontal line of unit length
The curve  K1 is generated by dividing  K0 into three equal parts and replacing the middle section with a triangular bump
The bump should have sides of length 1/3 so the length of the line is now 4/3
The second order curve  K2 is generated by building a bump on each of the 4 line segments of  K1


Void drawKoch(double dir , double len , int n)
           {          doubledirRad = 0.0174533 * dir  ;  // direction in radians
                       if ( n==0)
                       lineRel(len * Cos(dirRad) , len * Sin(dirRad));
                       else     {       n--;  // reduce the order & length
                       len  /=3;
drawKoch(dir , len ,n);
                       dir  += 60;
                       drawKoch(dir , len ,n);
                       dir  -= 120;
                       drawKoch(dir , len ,n);
                       dir  += 60;
                       drawKoch(dir , len ,n);
                                  }
              }      

Fractal Dimension
Estimated by box covering method
                 D  =  log(N) / log(1/r)
   N = no. of equal segments
    r = 1/N
For Koch curve the fractal dimension is in between 1 & 2
For Peanocurve  D is 2

No comments:

Post a Comment