Sunday, March 13, 2016

Link State routing

Aim:

To study the link state routing

Link State routing

Routing is the process of selecting best paths in a network. In the past, the term routing was also used to mean forwarding network traffic among networks. However this latter function is much better described as simply forwarding. Routing is performed for many kinds of networks, including the telephone network (circuit switching), electronic data networks (such as the Internet), and transportation networks. This article is concerned primarily with routing in electronic data networks using packet switching technology.

In packet switching networks, routing directs packet forwarding (the transit of logically addressed network packets from their source toward their ultimate destination) through intermediate nodes. Intermediate nodes are typically network hardware devices such as routers, bridges, gateways, firewalls, or switches. General-purpose computers can also forward packets and perform routing, though they are not specialized hardware and may suffer from limited performance. The routing process usually directs forwarding on the basis of routing tables which maintain a record of the routes to various network destinations. Thus, constructing routing tables, which are held in the router's memory, is very important for efficient routing. Most routing algorithms use only one network path at a time. Multipath routing techniques enable the use of multiple alternative paths.

In case of overlapping/equal routes, the following elements are considered in order to decide which routes get installed into the routing table (sorted by priority):

  1. Prefix-Length: where longer subnet masks are preferred (independent of whether it is within a routing protocol or over different routing protocol)

  1. Metric: where a lower metric/cost is preferred (only valid within one and the same routing protocol)

  1. Administrative distance: where a lower distance is preferred (only valid between different routing protocols)


Routing, in a more narrow sense of the term, is often contrasted with bridging in its assumption that network addresses are structured and that similar addresses imply proximity within the network. Structured addresses allow a single routing table entry to represent the route to a group of devices. In large networks, structured addressing (routing, in the narrow sense) outperforms unstructured addressing (bridging). Routing has become the dominant form of addressing on the Internet. Bridging is still widely used within localized environments.

No comments:

Post a Comment